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The theoretical treatment of intense heat transport processes is difficult because it 
is necessary to take into account the variable thermal and physical properties of the medium. 
An example of such a process is radiative heat transport. A fundamental characteristic of 
the material for radiative heat transport is the path length of the radiation, which depends 
significantly upon temperature [i]. In [2], the process of radiative heat transport was 
treated using the approximation of radiative thermal conduction [I]. In this approximation 
the problem reduces to the analysis of a quasilinear differential equation of the parabolic 
type. It is found that heat can be transported as thermal waves, where the wave front de- 
limits the cold and hot regions of the material. Physically the existence of a wave front 
implies a finite velocity of heat transport. The necessary conditions which the thermal 
conductivity of the medium must satisfy for the existence of a front are known [3, 4]. These 
conditions require that the thermal conductivity be degenerate on the surface of the thermal 
wave front. 

Radiative heat transport is described in a more exact way by nonlinear integrodifferen- 
tial equations, which take into account the nonlocal nature of the interaction of radiation 
and matter (see, e.g., [i, 5]). In many important cases one can use the gray-body approxima- 
tion [1] and assume that the absorption coefficient does not depend on the spectral composi- 
tion of the radiation. For the case of plane symmetry the integrodifferential equation has 
the following form, when written in terms of dimensionless variables [i, 5]: 
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Here T(x, t) e 0 is the temperature of the material; x~R is the coordinate along which 
heat is transport; t, time; E(T) e 0 [E(0) = 0], internal energy of the material, and is 
a monotonically increasing function of temperature; U(x, t) e 0, radiative energy density; 
k(T), coefficient of absorption of radiation by the material [0 < k(T) < = for 0 < T < ~, 
k(0) > 0]; I(~, x, t), intensity of the radiation given by 

I =  ~ -~ 
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x 
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= cos 8; 8 is the angle between the x axis and the (arbitrary) direction of the radiation 
(0 E 8 ~ ~) (the condition that the improper integrals in (0.2) exist limits the possible 
increase in the temperature T as JxJ + ~ [i]); K 2 = (L/s L is the characteristic length 
of the region heated by the radiation; s is the characteristic path length of the radiation. 

The limit K 2 + ~ in (0.i) corresponds to the approximation of radiative thermal conduc- 
tivity. In this limit (0.i) corresponds to the quasilinear heat-conduction equation, which 
is actually nonlinear even if k(T) = const < ~. The finite velocity of heat transport is 
always an effect. But, as shown below, a front can arise in the process described by (0.i) 
if k(T) = = on the front of the thermal wave. 
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i. Simple Wave. We first consider a particular solution of the type of a simple wave. 
Let T = T(N), I = I(~, q), where N = x - vt, and v ~ 0 is an arbitrary constant. Then (0.i) 
reduces to 

dE 
--v~= T T ' W x ~ I z - - ; I ) d $ - - T ~ ,  ( 1 . 1 )  

where Wn(Y)= S8 -"~x-ndx is the exponential integral [6]; z =• is the optical 
i 

thickness of the material [in order to shorten the notation, the argument in the integral 
of (i.i) and everywhere below will be omitted]. Equation (i.i) must be supplemented by boun- 
dary conditions at z = ~ or -~. In order to be specific, we put 

T = 0, I = 0 for z =oo. 

Integrating (i.i) with (1.2), we obtain 

(1.2) 

t S T~ sign (z - -  ~) W~ (I z - -  ; ]) dE. vE = - y  ( 1 . 3 )  

The integral equation (1.3) is a Hammerstein equation [7]. Integrating (1.3) twice 
we have 

l T 4 s ign (z - -  ;) W,  (] z - -  ; 1) dE + Tad;. v dE Eds  = 

Z ~ --,'90 Z 

The well-known relations between the exponential integrals [6] can be used to write W,(Iz - 
~I) = m(l z - ~[)W2(I z - ~I), where ~ ~[i/3, i]. Using the mean-value theorem and (1.3), 
we obtain an ordinary differential equation 

oo oo 

~ . . . .  3 -d-f' #9= dE Eds, (1.4) 
z 

where ~1(z) ~ [1/3, i], 6(z) ~ [0, T4(z)/E(z)]. We will assume that the ratio T4(z)/E(z) 
goes to zero as T § 0 and that it goes to infinity as T + =. The solution of (1.4) can be 
studied qualitatively by the well-known methods of [8]. It is found that, in the limit z 
=, T + 0 (1.4) is asymptotically equivalent to 

a o  t O,  co 0 = c%(oo) = 1 , .  
dz w o �9 �9 

and hence, by applying l'Hospital's rule, we find 

aE=--E, z---~oo~ T-~0. (1.5) dz 

Comparing (1.5) with (1.4) and (0.i), we find an asymptotic representation for the radiative 
energy density 

U = v J Edz, z --+ oo. 
Z 

Hence, the condition U e 0, E e 0 requires that v > 0. Physically this means that only heat- 
ing waves can exist. 

Asymptotic representations for T(n) and E(N) also follow from (1.5). In terms of the 
physical variables these relations are determined from the expression 
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I ~ dE (1.6) ~--~z=--~ E(T) k(r)' 

Here ~f is an arbitrary constant, l~fl < ~' 

It is important to note that (1.4) and the boundary condition (1.2) have the trivial 
solution E = 0, which is singular, since the uniqueness condition is violated when E = T = 0. 

It is evident from (1.6) that if the integral 

1 

dE 

0 

(i.7) 

exists, then the boundary condition (1.2) will be satisfied for a finite value of the inde- 
pendent variable ~. With no loss of generality we assume that the conditions (1.2) are satis- 
fied at N = Nf. When ~ > Nf, the solution must be continued from the singular solution T = 
E = 0. Then the necessary continuity conditions for T, U, and I will be satisfied at the 

point N = Nf. 

We note further that when z + -~ (1.4) is asymptotically equivalent to 

8 d ~  v @ - - y ~ =  O, 

and i t  then follows that T(~) becomes unbounded as z + - ~  and the derivative dT/dz - vE/4T 3. 

The solution of ( i . i ) ,  (1.3), or (1.4) in the entire region can be found only by numerical 
methods. Therefore we consider an example in which the solution can be found analytically 
in closed form. Following [9], we put E = T4; then the variables in (0. i)  separate; T(n) 
in this case is found by quadratures 

T 

4 ~ dT 

o 

and I(~, U) is given by 
T 1 

I -- ~ + i '  

where the separation constant $ ~[-i, 0] determines the velocity of the thermal waves 

The equations given here are sufficient to discuss all of the features of the solution which 
were addressed above. 

2. Comparison Theorem. Sufficient Condition for the Existence of a Front. We proceed 
now to the analysis of the time evolution of an arbitrary thermal pulse specified by the 
initial condition T(x, 0) = T0(x). Mathematically, the problem is formulated as a Cauchy 
problem for (0.i) in the region ~(x, t) = R x • Rt+. An effective device in the qualitative 
analysis of Cauchy problems is the comparison theorem with respect to the initial data. Dif- 
ferent variants of the theorem have been proved [4, 10-13] for the approximation of radiative 
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heat conduction. We briefly discuss here the proof of the analogous theorem for (0.i). The 
proof is based on the method of [12, 13]. We omit certain nonessential details of the proof 
in the interest of brevity. 

For the qualitative analysis of (0.i) it is convenient to transform it to the divergence 
form 

OE/Ot =--OS/Ox, 

where S(x, t) is the radiative energy flux [5, 14]: 

(2 .1)  

oo 

• t' 
S = ~  . r4k(T)sign(P) W2(IPI)d$. (2 .2)  

In particular, the conservation of energy of the thermal pulse follows directly from 
(2 .1 ) :  

ddt ~ Edx = 0 

R 

if S = 0 when [x] = ~. 

Let Ti (x ,  t )  ( i  = 1, 2) be the  s o l u t i o n s  of two Cauchy problems for  (2 .1)  given by the  
i n i t i a l  c o n d i t i o n s  T i (x ,  0) = T0i (x) ,  where the  f u n c t i o n s  T0i(x)  are  r e l a t e d  by the  inequal -  
i t y  

T01(x ) / >  T02(x),  x ~ R .  ( 2 . 3 )  

Following [i0, 12, 13], we prove the Comparison theorem by proving that its contrary 
is impossible. We assume the existence of the open region ~l~ and ~i = {(x, t):T2 >T1} , 
and T 2 = TI, (x, i)~ 8~ I. We consider the region ~i*~ ~l, cut off from ~i by the straight- 
line segment m projected to the t axis (Fig. i). Integrating (2.1) over ~i* and applying 
Green's theorem, we obtain 

E~dx -- ~ Sidt = O, F ~-- 0~,  i = t, 2. (2.4) 
r r 

Here it is assumed that we go around the piecewise-smooth contour F as indicated in Fig. 
1 [the relation (2.4) can be considered as defining the generalized solution for (0.I), 
the contour F is assumed to be arbitrary]. 

We consider the difference 

,~ (E 1 - -  E~) dx - -  .~ (S t  - -  $2) d t  = O. 

i f  

(2.5) 

We have the following rigorous inequality for the first integral in (2.5): 

.~(Ei--E2ldx= ~ (E1--E~)dx>O, 
I' m 

(2.6) 

because T I < T2, (x, t) ~21, and the direction of the integration is the same as the direc- 
tion of circulation around the contour F. 

The second integral in (2.5) can be transformed to 

tl 1 

~)~(S I - -  S2) dt  = • ~ ~ TJJ[(cl--t)(ql1 + q12)+ Aql]dgdt 
r t o o 

to o 

where 
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d~; 
] 

- - c o  

q~2= T~k(TOexP[---~lP~(x2, ~) 
xi 

Aq~=~T~k(Ti)[exp(---~]P~(x z, i) l) + e x p ( - - ~ , P i ( X l ,  ~)0]d~;  
x 1 

i i s  t h e  number o f  t h e  s o l u t i o n .  The r e s t  o f  t h e  n o t a t i o n  i s  g i v e n  in  F i g .  1. 

I f  t h e  a b s o r p t i o n  c o e f f i c i e n t  k (T)  s a t i s f i e s  t h e  c o n d i t i o n s  

k(T1)~k(T2)  ~ k(T,) T ~ k ( T 2 )  T~ T , ~  T~, ( 2 . 7 )  

t h e n  we have  0 < c 1 ( ~ ,  t )  g c 2 ( ~ ,  t )  < 1, q l l  > q21,  Aql < Aq2, q21 > q22;  h e n c e ,  

(S~ -- $2) dt < O. (2. 8) 
F 

The f i r s t  o f  t h e  c o n d i t i o n s  ( 2 . 7 )  means t h a t  t h e  a b s o r p t i o n  c o e f f i c i e n t  does  n o t  i n c r e a s e  
when t h e  t e m p e r a t u r e  o f  t h e  m a t e r i a l  i n c r e a s e s ,  w h i l e  t h e  s econd  i m p l i e s  t h e  p h y s i c a l l y  r e -  
q u i r e d  i n c r e a s e  o f  t h e  l u m i n o s i t y  w i t h  i n c r e a s i n g  t e m p e r a t u r e  o f  t h e  m a t e r i a l .  

R e l a t i o n s  ( 2 . 5 )  and ( 2 . 8 )  show t h a t  ( 2 . 5 )  c a n n o t  be s a t i s f i e d .  T h i s  means t h a t  i f  ( 2 . 3 )  
and ( 2 . 7 )  a r e  s a t i s f i e d ,  t h e  s o l u t i o n s  o f  t h e  Cauchy p rob lems  a r e  r e l a t e d  by t h e  i n e q u a l i t y  
T l ( x ,  t )  ~ T2(x ,  t )  in  t h e  e n t i r e  r e g i o n  (x ,  t ) ~  ~. Th i s  a s s e r t i o n  i s  t h e  c o m p a r i s o n  t h e o r e m  
w i t h  r e s p e c t  t o  t h e  i n i t i a l  d a t a .  

We c o n s i d e r  now t h e  Cauchy p rob lem f o r  ( 0 . 1 )  w i t h  t h e  i n i t i a l  c o n d i t i o n  T (x ,  0) = T 0 ( x ) ,  
where T0(x) is a finite bounded function T0(x) > 0 for x ~ ] x $ ,  x~[, x$.<x~, I x~ l<oo  and 
T0(x) = 0 outside of this interval. Using the simple wave solution for (0.i) as a majorant, 
it follows from the comparison theorem that the relations (1.7) and (2.7) are sufficient 
for the existence of a surface (front of the thermal wave)x=x~(t)(x~(t)<x~(t)),Ix~(t)l<oo 
such that 

r[>0, x ]xi(t) 
[ =  0, x ~  ]x 7(t), x +(t)[.  

The appearance of a front is due physically to the finite velocity of heat transport. 
The comparison theorem is not necessary for the existence of a front. 

3. Asymptotic Representation for the Temperature near the Front. Assuming that the 
condition on the front x = xf(t) is satisfied asymptotically in a small neighborhood of the 
front, an asymptotic representation can be obtained for the solution T(x, t) in the limit 
x + xf(t), and at the same time the necessary conditions for the existence of the front can 
be sharpened. Specifically, we will assume that T > 0 when x < xf(t) and T = 0 for x e xf(t). 

Several methods of finding such asymptotic representations are known [12, 15, 16], and 
they can be used to interpret the smoothness expansion [17]. 

Following [15], we differentiate the condition E(xf(t), t) = 0 with respect to time 

OE " OE dx/ 
07-- x / ~ = O ,  x=  ~(t), ~=--W" 

Assuming that this equation is satisfied asymptotically when x ~ xf(t) - 0, and substituting 
for the derivative 8E/3t from (0.I), we obtain the relation 

�9 OE - -  x 1 ~  = •  - -  r4)~ x l ~ O ,  x - - , - x l - -  O. (3.1) 

Comparing ( 3 . 1 )  and ( 1 . 1 ) ,  i t  can be shown t h a t  t h e y  a r e  c o m p l e t e l y  e q u i v a l e n t  i f  we 
assume v = x f ,  ~ = x - x f ( t ) .  Hence ,  t h e  r e s u l t s  o b t a i n e d  above  c o n c e r n i n g  t h e  e x i s t e n c e  o f  a 
front for a plane wave go over completely to the case of an arbitrary moving front x = xf(t), 
xf z 0. Therefore, (1.7) is a necessary condition for the existence of a thermal wave front 
and a finite velocity of heat transport. 
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As in the case of a simple wave, (1.6) can be used to find an asymptotic representation 
for T close to the front. Asymptotic representations for S and U can then be found from 
the equations 

0 

s = 7 ~ ,  u = ~Gj J' k (r) E (T) ~ .  
~ - - 2 r  

In particular, if k(T) = T-Y, y > 0 [i], then for an ideal gas (E = T), we obtain 

TN [y• 1_x)]I/~ SNxjT, U~:jT, z-~xj--0. 

Hence if the path length of the radiation is comparable to the characteristic linear 
dimension of the region heated by the radiation, the nonlocal nature of the interaction of 
the radiation with matter is significant in the formation of a thermal wave front. 

4. Approximate Analysis of the Problem. A much simpler model of radiative heat trans- 
port than (0.i) and (0.2) is the diffusion approximation. In order to obtain the fundamental 
equations of this approximation we integrate the definition of S in (2.2) twice: 

oo co ~ oo 

Y 

(4.1) 

Using (2.2) we transform (4.1) to the form 

co co oo 

Y ~ y 

(4.2) 

where 

S T asign(y-~)W 4 ( l y - ; I )  d; 
(y) = -~ 

S T 4 sign (y -- ;) w 2 (I y - ; I) a; 
--oo 

(4.3) 

The relations between the exponential integrals [6] and the mean value theorem give 
w(y)~ [1/3, i]. If we now put ~ = m* = const, m*~ [i/3, i], and differentiate (4.2), and 
then transform back to the physical variables, we obtain the required differential equation 

o* o i aS • OT 4 
ax ~2 k (T) ~" = ~'~x.~ (4.4) 

which in this approximation is postulated in place of the definition (2.2). The choice of 
the constant ~* is connected physically with the method of averaging I over e [5, 14]. As 
before, we have the continuity condition of the radiation [i] 

OS/Ox = •  - -  U) ,  (4 .5)  

and it can be considered as a definition of U(x, t). 

Hence, in place of the integrodifferential equation (0.i), we will have the system of 
differential equations (2.1), (4.4), and (4.5). We note that these equations are formally 
equivalent to the diffusion approximation (up to the choice of the constant m*), which as- 
sumes the proportionality between the radiation flux S and the gradient of the radiative 
energy density U [i]. 

This approximation preserves the qualitative features of the "exact" relations (011) 
and (0.2). One can prove the comparison theorem of solutions of the Cauchy problem with 
respect to the initial data for the diffusion approximation in a way analogous to the method 
used in Sec. 2. The conditions (2.7) turn out to be necessary in this case also. The analy- 
tical and numerical study is significantly simpler in this approximation. For example, in 
the case of simple waves we are led at once to the ordinary differential equation 
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* d~E vE + t dT ~ 
Vdz--F= ~. (4.6) 

If we introduce the new dependent variable p = dE/dz, (4.6) reduces to a first-order ordinary 
differential equation 

i  T_I p + E 
~ ,  dp By dE 

~= p ' (4.7) 

where dT4/dE e 0, dT4/dE + 0 (~) as T § 0 (~). Obviously, the point p = E = 0 is a singular 
point for (4.7). The nature of the integral curves near this point can be studied by reduc- 
ing (4.7) to an equivalent dynamical system [8]. This analysis shows that p = E = 0 is a 
saddle point. The qualitative form of the integral curves of (4.7) near the singular point 
is shown in Fig. 2 with v > 0. The dashed curves correspond to the extremum points of the 
function p(E). The condition Idp/dEl = ~ is satisfied along the line p = 0. The only non- 
trivial solution of the problem (1.2), (4.6) is the separatrix of the family of integral 
curves lying entirely in the fourth quadrant of the p-E plane (denoted by the number i). 

The above qualitative analysis shows that the asymptotic representation of the solution 
of (4.6) in the limit E + 0, S § 0 can be obtained from 

~*dE/dz = - - E ,  z - + o  o, T-->-O. (4.8) 

Relation (4.8) is the same as (1.5), except for the factor m*. This means that all of the 
asymptotic representations for T + 0 obtained in Secs. 1 and 3 continue to hold here. If 
we put m* = i, they are exactly the same. The existence of the integral (1.7) leads to a 
thermal wave front and hence to a finite velocity of heat transport in the diffusion approxi- 
mation. 

We note that a numerical analysis of (4.3) can be used to refine the approximate solu- 
tion obtained on the basis of (4.4). 

The author thanks K. B. Parlor and L. D. Pokrovskii for useful discussions. 
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CONTROL OF THE SHAPE OF PHASE TRANSITION FRONTS DURING ZONE MELTING 

O. M. Lavrent'eva UDC 536.42 

In order to prepare single crystals there is extensive use of the method of zone melting 
in which a long specimen is drawn through a heater [i, 2]. As a result of this, a molten 
zone occurs between the rod of polycrystalline material being consumed and the single crystal 
formed. Variants of the method differ in the way of heating and cooling, and also whether 
the specimen is contained in a crucible or not. The quality of the crystal obtained depends 
on the shape of the phase transition surfaces arising, which is determined by the boundary 
regime at the ingot surface. The problem of determining the boundary regime providing a 
specified (optimum in the sense of any criterion) shape of these surfaces is important. Ap- 
parently for many substances a flat shape is the optimum from the point of view of the quality 
of the single crystal obtained. 

In this work the most simple model of the zone-melting process is considered ignoring 
convective heat transfer in the liquid phase. Use of this model is only valid in the case 
of very slow specimen movement when there is greatest interest in studying the steady-state 
process. It is assumed that the size of the ingot, parameters of the remelted substance, 
drawing rate, width of the liquid zone, and heating schedule are known. The cooling schedule 
is sought which provides a flat shape for the melting and crystallization fronts. 

i. Statement of the Problem. Let an ingot be drawn through a heater at constant veloc- 
ity v. We choose a Cartesian coordinate system (Xl, x=, x 3) connected with the heater so 
that axis xl coincides with the direction of specimen movement. It is assumed that heat 
exchange is known at the boundary of the region G' which does not move in this coordinate 
system. The temperature field T'(xl, x2, x3) , which is steady in the selected system, and 
the position of the melting Z I and crystallization Z 2 fronts are determined from the conditions 
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